265 research outputs found

    Local polynomial regression for circular predictors

    No full text
    We consider local smoothing of datasets where the design space is the d-dimensional (d >= 1) torus and the response variable is real-valued. Our purpose is to extend least squares local polynomial fitting to this situation. We give both theoretical and empirical results

    Oxidative Stress in Oocytes during Midprophase Induces Premature Loss of Cohesion and Chromosome Segregation Errors

    Get PDF
    In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the maternal age effect. During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage

    Serum proteins profile in Comisana lambs during the first month of life

    Get PDF
    Abstract. The aim of the present study was to measure the serum total proteins and the serum protein fractions (albumin, α1-, α2-, β-, and γ- globulins) of ten newborn lambs (Comisana breed) during the first 30 days of life in order to obtain useful information for neonatal care. From each animal, blood samples were collected via jugular venipuncture at the same hour (9.00) every 3 days for 30 days starting from birth (day 0). The concentrations of serum total proteins and albumin, α1-, α2-, β-, γ- globulins, and Albumin/Globulins (A/G) ratio were determined using an automated electrophoresis system. One-way repeated measures analysis of variance (ANOVA), followed by Bonferroni's test, was used to determine significant differences between mean values of the studied parameters from the 1st to the 30th day of the experimental period. Data analysis of variance showed a statistical effect of days of life on total proteins, albumin, α1-globulins, β-globulins, γ-globulins and ratio A/G during the first 30 days of life (P<0.0001), while no statistical significant effect of days of life was observed on α2-globulins during the experimental period (P=0.27). The obtained results indicated that passive transfer status, determined from serum immunoglobulin concentration 24 hours after birth, is a significant source of variation in preweaning growth performance in dairy lambs. These finding make a contribution to the knowledge of physiological adaptation in lambs during the first 30 days of life and give useful information for the diagnosis and treatment of neonatal diseases

    Genetically Encoded Voltage Indicators Are Illuminating Subcellular Physiology of the Axon

    Get PDF
    Everything we see and do is regulated by electrical signals in our nerves and muscle. Ion channels are crucial for sensing and generating electrical signals. Two voltage-dependent conductances, Na+ and K+, form the bedrock of the electrical impulse in the brain known as the action potential. Several classes of mammalian neurons express combinations of nearly 100 different varieties of these two voltage-dependent channels and their subunits. Not surprisingly, this variability orchestrates a diversity of action potential shapes and firing patterns that have been studied in detail at neural somata. A remarkably understudied phenomena exists in subcellular compartments of the axon, where action potentials initiate synaptic transmission. Ion channel research was catalyzed by the invention of glass electrodes to measure electrical signals in cell membranes, however, progress in the field of neurobiology has been stymied by the fact that most axons in the mammalian CNS are far too small and delicate for measuring ion channel function with electrodes. These quantitative measurements of membrane voltage can be achieved within the axon using light. A revolution of optical voltage sensors has enabled exploring important questions of how ion channels regulate axon physiology and synaptic transmission. In this review we will consider advantages and disadvantages of different fluorescent voltage indicators and discuss particularly relevant questions that these indicators can elucidate for understanding the crucial relationship between action potentials and synaptic transmission

    Infrared methodologies for the assessment of skin temperature daily rhythm in two domestic mammalian species

    Get PDF
    To assess the accuracy of infrared methodologies for daily rhythm monitoring of skin temperature, five clinically healthy Italian Saddle gelding horses, and five not pregnant and not lactating Camosciata goats, were monitored every 4 h over a 48 h period. The horses were housed in individual boxes, while the goats in two indoor pens, under natural photoperiod and natural environmental temperature. In each animal, skin temperature was recorded with the use of a digital infrared camera and a non-contact infrared thermometer, in five regions: neck, shoulder, ribs, flank and croup. Recorded values were compared with the well-established daily rhythm of rectal temperature. Rectal temperature was recorded at the same time by means of a digital thermometer. In horses, a lower value of skin temperature was recorded using the infrared thermometer for the croup region compared to shoulder and flank; a lower value of skin temperature was recorded using thermography for the croup region compared to the shoulder. In goats, a lower value of skin temperature was recorded using the infrared thermometer for the croup region compared to the flank. In both species, higher values of rectal temperature were observed, compared to the temperature recorded at the skin regions using the other two methodologies. Cosinor rhythmometry showed a daily rhythm of rectal and skin temperature recorded using both methodologies in all the examined regions. General linear model (GLM) showed statistically significant effect of breed on all rhythmic parameters; of day of monitoring on amplitude; of site of recording (rectal vs skin regions) on mesor, amplitude and acrophase; and no effect of methodologies used. The results of this study show the differences in rhythmicity of various body regions temperature and their differences in comparison with daily rhythm rectal temperature. The use of infrared methodologies was inaccurate in assessing body core temperature, but its use could be considered for the evaluation of inflammation in the different body sites

    Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821. This project is supported by the Marie Curie ITN ‘Neptune’, GA 317172, funded under the FP7, PEOPLE Work Programme of the European Commission. This project is supported by the DFG - Deutsche Forschungsgemeinschaft (Reference no. JE 777/3–1).Deutsche Forschungsgemeinschaft 777/3-1 Gaspar JekelyMax-Planck-Gesellschaft Open-access funding Gaspar JekelyEuropean Commission GA 317172 Gaspar Jekel
    corecore